DOI: 10.3724/SP.J.1226.2012.00453

Sciences in Cold and Arid Regions 2012/4:6 PP.453-461

Genetic diversity of wild barley(Hordeum vulgare ssp.spontaneum) and its utilization for barley improvement

Wild barley(Hordeum vulgare spp.spontaneum) is the undisputed progenitor of cultivated barley and offers considerable potential as a genetic resource for barley improvement.Naturally occurring populations are distributed primarily across the Fertile Crescent,but secondary areas of diversity are also found in central Asia and Tibet.The pattern of its genetic diversity is non-random,and is structured on a global,regional and local scale.On a global scale,diversity follows ecogeography,while on a regional and local scale,it is more strongly determined by ecology.Populations growing in areas where the climate is unreliable and/or the soil is heterogeneous tend to retain the most diversity.A large number of accessions are currently conserved ex situ,but a high proportion of these have originated from the Fertile Crescent.Given the likelihood of future climate change,conserving germplasm both in situ and ex situ in the various regions where the species' currently existing is a research priority.The value of H.vulgare spp.spontaneum for the improvement of cultivated barley lies largely in its potential contribution to the levels of attainable pathogen resistance and abiotic stress tolerance.

Key words:wild barley,distribution,genetic diversity,utilization

ReleaseDate:2015-04-17 09:58:00

Ahokas H, 1982. Variation of kernel protein and lysine in the wild progenitorof barley. Hereditas, 96: 29-37.

Ahokas H, Naskali L, 1990. Variation of a-amylase, b-amylase, b-glucanase,pullulanase, proteinase and chitinase activity in germinated samples ofthe wild progenitor of barley. Journal of the Institute of Brewing, 96:27-31.

Andras C, Matyas C, Korff VM, Bettina N, Horvath GV, Andras P, Janos P,Denes D, Toerjek O, 2011. Allele mining and haplotype discovery inbarley candidate genes for drought tolerance. Euphytica, 181: 341-356.

Ayele M, Tefera H, Assefa K, Nguyen HT, 1999. Genetic characterization oftwo Eragrostis species using AFLP and morphological traits. Hereditas,130: 33-40.

Azhaguvel P, Komatsuda T, 2007. A phylogenetic analysis based on nucleo-tide sequence of a marker linked to the brittle rachis locus indicates a di-phyletic origin of barley. Annals of Botany, 100: 1009-1015.

Backes G, Madsen LH, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A,2003. Localisation of genes for resistance against Blumeria graminis f.sp.hordei and Puccinia graminis in a cross between a barley cultivar and awild barley (Hordeum vulgare ssp. spontaneum) line. Theoretical andApplied Genetics, 106: 353-362.

Badr A, 2000. On the origin and domestication history of barley (Hordeumvulgare). Molecular Biology and Evolution, 17: 499-510.

Baek H, Beharav A, Nevo E, 2003. Ecological-genomic diversity of mi-crosatellites in wild barley, Hordeum spontaneum, populations in Jordan.Theoretical and Applied Genetics, 106: 397-410.

Bandurska H, Stroiński A, 2003. ABA and proline accumulation in leavesand roots of wild (Hordeum spontaneum) and cultivated (Hordeum vul-gare 'Maresi') barley genotypes under water deficit conditions. ActaPhysiologiae Plantarum, 25: 55-61.

Bingham I, Walters D, Foulkes M, Paveley N, 2009. Crop traits and the tol-erance of wheat and barley to foliar disease. Annals of Applied Biology,154: 159-173.

Blattner FR, 2004. Phylogenetic analysis of Hordeum (Poaceae) as inferredby nuclear rDNA ITS sequences. Molecular Phylogenetics and Evolution,33: 289-299.

Bothmer RV, 2003. Diversity in Barley (Hordeum vulgare). Elsevier, Am-sterdam, pp. 1-280.

Buckler ES, Thornsberry JM, Kresovich S, 2001. Molecular diversity, struc-ture and domestication of grasses. Genetical Research, 77: 213-218.

Burger JC, Chapman MA, Burke JM, 2008. Molecular insights into the evo-lution of crop plants. American Journal of Botany, 95: 113-122.

Chen G, Komatsuda T, Ma JF, Nawrath C, Pourkheirandish M, Tagiri A, HuYG, Sameri M, Li X, Zhao X, Liu YB, Li C, Ma XY, Wang AD, Nair S,Wang N, Miyao A, Sakuma S, Yamaji N, Zheng XT, Nevo E, 2011. AnATP-binding cassette subfamily G full transporter is essential for the re-tention of leaf water in both wild barley and rice. Proceedings of the Na-tional Academy of Sciences of the United States of America, 108:12354-12359.

Chen G, Krugman T, Fahima T, Chen K, Hu Y, Röder M, Nevo E, Korol A,2010. Chromosomal regions controlling seedling drought resistance inIsraeli wild barley, Hordeum spontaneum C. Koch. Genetic Resourcesand Crop Evolution, 57: 85-99.

Chen G, Li C, Shi Y, Nevo E, 2008. Wild Barley, Hordeum spontaneum, agenetic gesource for crop improvement in cold and arid regions. Sciencein Cold and Arid Regions, 1: 115-124.

Chen G, Sagi M, Weining S, Krugman T, Fahima T, Korol AB, Nevo E, 2004.Wild barley eibi1 mutation identifies a gene essential for leaf water con-servation. Planta, 219: 684-693.

Choo TM, 2002. Genetic resources of Tibetan barley in China. Crop Science,42: 1759-1760.

Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, SteinN, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, ChaoS, Varshney RK, Szűcs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A,Muehlbauer GJ, DeYoung J, Marshal DF, Madishetty K, Fenton RD,Condamine P, Graner A, Waugh R, 2009. Development and implementa-tion of high-throughput SNP genotyping in barley. BMC Genomics, 10:582.

Cockram J, White J, Zuluaga DL, Smith D, Comadran J, Macaulay M, LuoZ, Kearsey MJ, Werner P, Harrap D, Tapsell C, Liu H, Hedley PE, SteinN, Schulte D, Steuernagel B, Marshall DF, Thomas WT, Ramsay L,Mackay I, Balding DJ, AGOUEB Consortium, Waugh R, O'SullivanDM, 2010. Genome-wide association mapping to candidate polymor-phism resolution in the unsequenced barley genome. Proceedings of theNational Academy of Sciences of the United States of America, 107:21611-21616.

Corke H, 1995. Protein content and composition in crosses between wild andcultivated barley. Cereal Research Communications, 23: 411-417.

Corke H, Atsmon D, 1988. Amino acid resources of the wild relative of bar-ley (Hordeum spontaneum) in Israel. Plant Breeding, 101: 89-94.

Cronin JK, Bundock PC, Henry RJ, Nevo E, 2007. Adaptive climatic mo-lecular evolution in wild barley at the Isa defense locus. Proceedings ofthe National Academy of Sciences of the United States of America, 104:2773-2778.

Cummings MP, Clegg MT, 1998. Nucleotide sequence diversity at the alco-hol dehydrogenase 1 locus in wild barley (Hordeum vulgare ssp. spon-taneum): An evaluation of the background selection hypothesis. Pro-ceedings of the National Academy of Sciences of the United States ofAmerica, 95: 5637-5642.

Davila JA, Loarce Y, Ramsay L, Waugh R, Ferrer E, 1999. Comparison ofRAMP and SSR markers for the study of wild barley genetic diversity.Hereditas (Lund), 131: 5-13.

Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR,Powell W, 2000. Wild barley: a source of genes for crop improvement inthe 21st century? Journal of Experimental Botany, 51: 9-17.

Fetch JT, Steffenson B, Nevo E, 2003. Diversity and sources of multipledisease resistance in Hordeum spontaneum. Plant Disease, 87:1439-1448.

Feuillet C, Muehlbauer GJ, 2009. Genetics and Genomics of the Triticeae.Springer, Berlin.

Fitzgerald TL, Shapter FM, McDonald S, Waters DLE, Chivers IH, DrenthA, Nevo E, Henry RJ, 2011. Genome diversity in wild grasses under en-vironmental stress. Proceedings of the National Academy of Sciences ofthe United States of America, 108: 21140-21145.

Forster BP, Ellis RP, Thomas WTB, Newton AC, Tuberosa R, This D,El-Enein RA, Bahri MH, Ben Salem M, 2000. The development and ap-plication of molecular markers for abiotic stress tolerance in barley.Journal of Experimental Botany, 51: 19-27.

Genger RK, Nesbitt K, Brown AHD, Abbott DC, Burdon JJ, 2005. A novelbarley scald resistance gene: genetic mapping of the Rrs15 scald re-sistance gene derived from wild barley, Hordeum vulgare ssp. sponta-neum. Plant Breeding, 124: 137-141.

Gong X, Westcott S, Li C, Yan G, Lance R, Sun D, 2009. Comparative anal-ysis of genetic diversity between Qinghai-Tibetan wild and Chineselandrace barley. Genome, 52: 849-861.

Gorny AG, 2001. Variation in utilization efficiency and tolerance to reducedwater and nitrogen supply among wild and cultivated barleys. Euphytica,117: 59-66.

Grant V, 1957. The species problem. In: The Plant Species in Theory andPractice. American Association for the Advancement of Science, Wash-ington D.C., pp. 39-80.

Gunasekera D, Santakumari M, Glinka Z, Berkowitz GA, 1994. Wild andcultivated barley genotypes demonstrate varying ability to acclimate toplant water deficits. Plant Science, 99: 125-134.

Guo P, Baum M, Grando S, Ceccarelli S, Bai G, Li R, Von Korff M, Varsh-ney RK, Graner A, Valkoun J, 2009. Differentially expressed genes be-tween drought-tolerant and drought-sensitive barley genotypes in re-sponse to drought stress during the reproductive stage. Journal of Ex-perimental Botany, 60: 3531-3544.

Gupta PK, Sharma S, Kumar S, Balyan HS, Beharav A, Nevo E, 2004.Adaptive ribosomal DNA polymorphism in wild barley at a mosaic mi-crosite, Newe Ya'ar in Israel. Plant Science, 166: 1555-1563.

Hadjichristodoulou A, 1993. The use of wild barley in crosses for grain pro-duction under dryland conditions. Euphytica, 69: 211-218.

Harlan JR, Zohary D, 1966. Distribution of wild wheats and barley. Science,153: 1074-1080.

Heywood VH, 1986. Infraspecific classification of wild and cultivatedplants—a summing up. In: Styles BT (ed.). Infraspecific Classification ofWild and Cultivated Plnats. Clarendon Press, Oxford, pp. 419-424.

Huang J, Redmann RE, 1995. Solute adjustment to salinity and calcium sup-ply in cultivated and wild barley. Journal of Plant Nutrition, 18:1371-1389.

Huang Q, Beharav A, Li Y, Kirzhner V, Nevo E, 2002. Mosaic microecolog-ical differential stress causes adaptive microsatellite divergence in wildbarley, Hordeum spontaneum, at Neve Yaar, Israel. Genome, 45(6):1216-1229.

Hübner S, Höffken M, Oren E, Haseneyer G, Stein N, Graner A, Schmid K,Fridman E, 2009. Strong correlation of wild barley (Hordeum sponta-neum) population structure with temperature and precipitation variation.Molecular Ecology, 18(7): 1523-1536.

Hussain SS, 2006. Barley genetics and genomics: A review. Proceed-ings—Pakistan Academy of Sciences, 43: 63.

Ivandic V, Hackett C, Zhang Z, Staub J, Nevo E, Thomas W, Forster B, 2000.Phenotypic responses of wild barley to experimentally imposed waterstress. Journal of Experimental Botany, 51: 2021-2029.

Ivandic V, Walther U, Graner A, 1998. Molecular mapping of a new gene inwild barley conferring complete resistance to leaf rust (Puccinia hordeiOtth). Theoretical and Applied Genetics, 97: 1235-1239.

Jakob SS, Meister A, Blattner FR, 2004. The considerable genome size vari-ation of Hordeum species (Poaceae) is linked to phylogeny, life form,ecology, and speciation rates. Molecular Biology and Evolution, 21:860-869.

Jenks MA, Hasegawa PM, Jain SM, 2008. Advances in Molecular BreedingToward Drought and Salt Tolerant Crops. Springer, Dordrecht, Nether-lands.

Jφrgensen RB, 1982. Biochemical-genetical investigation of wild-species ofbarley reflecting relationships within the barley genus (Hordeum L).Hereditas, 97: 322-332.

Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman A, 2000. Genomeevolution of wild barley (Hordeum spontaneum) by BARE-1 retrotrans-poson dynamics in response to sharp microclimatic divergence. Pro-ceedings of the National Academy of Sciences of the United States ofAmerica, 97: 6603-6607.

Khoury C, Laliberté B, Guarino L, 2010. Trends in ex situ conservation ofplant genetic resources: a review of global crop and regional conserva-tion strategies. Genetic Resources and Crop Evolution, 57: 625-639.

Kole C, 2011. Wild Crop Relatives: Genomic and Breeding Resources: Ce-reals. Springer, Dordrecht, pp. 308-319.

Korff MV, Wang H, Léon J, Pillen K, 2005. AB-QTL analysis in springbarley, I: Detection of resistance genes against powdery mildew, leaf rustand scald introgressed from wild barley. Theoretical and Applied Genet-ics, 111: 583-590.

Lakew B, Eglinton J, Henry RJ, Baum M, Grando S, Ceccarelli S, 2010. Thepotential contribution of wild barley (Hordeum vulgare ssp. spontaneum)germplasm to drought tolerance of cultivated barley (H. vulgare ssp.vulgare). Field Crops Research, 120: 161-168.

Léon J, Silz S, Harloff HJ, 2000. β-D-glucan content during grain filling inspring barley and its wild progenitor Hordeum vulgare ssp. spontaneum.Journal of Agronomy and Crop Science, 185: 1-8.

Li G, Liu Y, Zhang T, Yang Z, Nevo E, 2010. Adaptive microclimatic evolu-tion of the dehydrin 6 gene in wild barley at "Evolution Canyon", Israel(2 nd ). International Symposium on Genomics of Plant Genetic Resources,April 24-27, Bologna, Italy.

Li W, Jiang Q, Chen G, Pu Z, Liu Y, Wang J, Zheng Y, Wei Y, 2011. Com-parative analysis of Hina gene sequences in wild (Hordeum spontaneum)and cultivated (H. vulgare) barleys. Agricultural Sciences in China, 10:1313-1322.

Lin JZ, Brown AHD, Clegg MT, 2001. Heterogeneous geographic patternsof nucleotide sequence diversity between two alcohol dehydrogenasegenes in wild barley (Hordeum vulgare subspecies spontaneum). Pro-ceedings of the National Academy of Sciences of the United States ofAmerica, 98: 531-536.

Lin JZ, Morrell PL, Clegg MT, 2002. The influence of linkage and inbreed-ing on patterns of nucleotide sequence diversity at duplicate alcohol de-hydrogenase loci in wild barley (Hordeum vulgare ssp. spontaneum).Genetics, 162: 2007-2015.

Lupu A, Nevo E, Zamorzaeva I, Korol A, 2006. Ecological-genetic feedbackin DNA repair in wild barley, Hordeum spontaneum. Genetica, 127:121-132.

Ma D, 2000. Genetic Resources of Tibetan Barley in China. China Agricul-tural Press, Beijing, pp. 155-271.

March TJ, Richter D, Colby T, Harzen A, Schmidt J, Pillen K, 2012. Identi-fication of proteins associated with malting quality in a subset of wildbarley introgression lines. Proteomics, 12: 2843-2851.

Marillia E, Scoles G, 1996. The use of RAPD markers in Hordeum phyloge-ny. Genome, 39: 646-654.

Morrell PL, Clegg MT, 2007. Genetic evidence for a second domesticationof barley (Hordeum vulgare) east of the Fertile Crescent. Proceedings ofthe National Academy of Sciences of the United States of America, 104:3289-3294.

Morrell PL, Lundy KE, Clegg MT, 2003. Distinct geographic patterns ofgenetic diversity are maintained in wild barley (Hordeum vulgare ssp.spontaneum) despite migration. Proceedings of the National Academy ofof the United States of America, 100: 10812-10817.

Morrell PL, Toleno DM, Lundy KE, Clegg MT, 2005. Low levels of linkagedisequilibrium in wild barley (Hordeum vulgare ssp. spontaneum) de-spite high rates of self-fertilization. Proceedings of the National Academyof Sciences of the United States of America, 102: 2442-2447.

Nawrath C, 2006. Unraveling the complex network of cuticular structure andfunction. Current Opinion in Plant Biology, 9: 281-287.

Neale D, Saghai-Maroof M, Allard R, Zhang Q, Jφrgensen R, 1988. Chloro-plast DNA diversity in populations of wild and cultivated barley. Genet-ics, 120: 1105-1110.

Nevo E, 1992. Origin, evolution, population genetics and resources forbreeding of wild barley, Hordeum spontaneum, in the Fertile Crescent. In:Shewry P (ed.). Barley: Genetics, Molecular Biology and Biotechnology.CABI Publishing International, Wallingford, U.K., pp. 19-43.

Nevo E, 1995. Asian, African and European biota meet at "Evolution Can-yon" Israel: local tests of global biodiversity and genetic diversity pat-terns. Proceedings of the Royal Society of London. Biological Sciences(Series B), 262: 149-155.

Nevo E, 1998. Molecular evolution and ecological stress at global, regionaland local scales: The Israeli perspective. Journal of Experimental Zoolo-gy, 282: 95-119.

Nevo E, 2005. Population genetic structure of cereal wild progenitors. In:Gupta PK, Varshney RK (eds.). Cereal Genomics. Kluwer AcademicPress, Dordrecht, pp. 135-163.

Nevo E, 2007. Evolution of wild wheat and barley and crop improvement:Studies at the Institute of Evolution. Israel Journal of Plant Sciences, 55:251-262.

Nevo E, 2009. Ecological genomics of natural plant populations: the Israeliperspective. Methods in Molecular Biology, 513: 321-344.

Nevo E, 2012a. "Evolution Canyon", a potential microscale monitor of glob-al warming across life. Proceedings of the National Academy of Sciencesof the United States of America, 109: 2960-2965.

Nevo E, 2012b. Evolution of Wild Barley and Barley Improvement. Pro-ceedings of the 11 th International Barley Genetic Symposium, April15-20, Hangzhou, China.

Nevo E, Beiles A, 2011. Genetic variation in nature. Scholarpedia, 6(7):8821-8835.

Nevo E, Beiles A, Kaplan D, Goldenberg EM, Olsvig-Whittaker L, Naveh Z,1986a. Natural selection of allozyme polymorphisms: a microsite testrevealing ecological genetic differentiation in wild barley. Evolution,40(1): 13-20.

Nevo E, Beiles A, Storch N, Doll H, Andersen B, 1983. Microgeographicedaphic differentiation in hordein polymorphisms of wild barley. Theo-retical and Applied Genetics, 64(2): 123-132.

Nevo E, Beiles A, Zohary D, 1986b. Genetic resources of wild barley in theNear East: structure, evolution and application in breeding. BiologicalJournal of The Linnean Society, 27: 355-380.

Nevo E, Brown A, Zohary D, Storch N, Beiles A, 1981. Microgeographicedaphic differentiation in allozyme polymorphisms of wild barley(Hordeum spontaneum, Poaceae). Plant Systematics and Evolution, 138:287-292.

Nevo E, Chen G, 2010. Drought and salt tolerances in wild relatives forwheat and barley improvement. Plant Cell and Environment, 33:670-685.

Nevo E, Fu YB, Pavlicek T, Khalifa S, Tavasi M, Beiles A, 2012. Evolutionof wild cereals during 28 years of global warming in Israel. Proceedingsof the National Academy of Sciences of the United States of America,109: 3412-3415.

Nevo E, Zohary D, Beiles A, Kaplan D, Storch N, 1986c. Genetic diversityand environmental associations of wild barley, Hordeum spontaneum, inTurkey. Genetica, 68: 203-213.

Nevo E, Zohary D, Brown A, Haber M, 1979. Genetic diversity and envi-ronmental associations of wild barley, Hordeum spontaneum, in Israel.Evolution, 33: 815-833.

Orabi J, Jahoor A, Backes G, 2009. Genetic diversity and population struc-ture of wild and cultivated barley from West Asia and North Africa. PlantBreeding, 128: 606-614.

Owuor E, Beharav A, Fahima T, Kirzhner V, Korol A, Nevo E, 2003. Mi-croscale ecological stress causes RAPD molecular selection in wild bar-ley, Neve Yaar microsite, Israel. Genetic Resources and Crop Evolution,50: 213-224.

Owuor ED, Fahima T, Beharav A, Korol A, Nevo E, 1999. RAPD diver-gence caused by microsite edaphic selection in wild barley. Genetica,105: 177-192.

Pourkheirandish M, Komatsuda T, 2007. The importance of barley geneticsand domestication in a global perspective. Annals of Botany, 100:999-1008.

Ross-Ibarra J, Morrell PL, Gaut BS, 2007. Plant domestication, a uniqueopportunity to identify the genetic basis of adaptation. Proceedings of theNational Academy of Sciences of the United States of America, 104:8641-8648.

Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML,Svensson JT, Stein N, Varshney RK, Marshall DF, 2006. Recent his-tory of artificial outcrossing facilitates whole-genome associationmapping in elite inbred crop varieties. Proceedings of the NationalAcademy of Sciences of the United States of America, 103:18656-18661.

Saisho D, Purugganan MD, 2007. Molecular phylogeography of domesti-cated barley traces expansion of agriculture in the Old World. Genetics,177: 1765-1776.

Saisho D, Takeda K, 2011. Barley: emergence as a new research material ofcrop science. Plant and Cell Physiology, 52: 724-727.

Samuels L, Kunst L, Jetter R, 2008. Sealing plant surfaces: cuticular waxformation by epidermal cells. Plant Biology, 59: 683-707.

Schouten HJ, Krens FA, Jacobsen E, 2006. Cisgenic plants are similar to tra-ditionally bred plants. EMBO Reports, 7: 750-753.

Shao Q, Li A, 1987. Unity of genetic population for wild barley and culti-vated barley in Himalaya area. Barley Genet, 5: 35-41.

Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M,Langridge P, Collins NC, 2010. HvNax3-a locus controlling shoot sodi-um exclusion derived from wild barley (Hordeum vulgare ssp. sponta-neum). Functional & Integrative Genomics, 10: 277-291.

Shen Y, Lansky EP, Nevo E, 2010. Wild barley—Harbinger of biodiversity.Biodiversity, 11: 19-25.

Shen Y, Lebold K, Lansky EP, Traber MG, Nevo E, 2011. 'Tocol-omic' di-versity in wild barley, short communication. Chemistry & Biodiversity, 8:2322-2330.

Shulgina I, Yakubov B, Orlovsky N, Mendlinger S, Volis S, 2006. Genetic(RAPD) diversity across species range: Core vs. peripheral populationsof wild barley in Israel and Turkmenistan. Israel Journal of Ecology &Evolution, 52: 93-109.

Song WN, Henry RJ, 1995. Molecular analysis of the DNA polymorphismof wild barley (Hordeum spontaneum) germplasm using the polymerasechain reaction. Genetic Resources and Crop Evolution, 42: 273-280.

Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A, 2007.Identification of a novel gene (Hsdr4) involved in water-stress tolerancein wild barley. Plant Molecular Biology, 64: 17-34.

Swanston JS, 2011. Barley: Production, Improvement and Uses. In: UllrichSE (ed.). Chichester, U.K., pp. 144-390.

Tan R, Ma D, Ding Y, 2005. Comparative analysis of sequences of the 5SrDNA NTS in wild close relatives of barley from Tibet of China. ActaGenetica Sinica, 32: 1094-1100.

Tanksley S, Nelson J, 1996. Advanced backcross QTL analysis: a method forthe simultaneous discovery and transfer of valuable QTLs from una-dapted germplasm into elite breeding lines. Theoretical and Applied Ge-netics, 92: 191-203.

Turpeinen T, Tenhola T, Manninen O, Nevo E, Nissil E, 2001. Microsatellitediversity associated with ecological factors in Hordeum spontaneumpopulations in Israel. Molecular Ecology, 10: 1577-1591.

Tyagi K, Park MR, Lee H, Lee C, Rehman S, Steffenson B, Yun SJ, 2011.Fertile crescent region as source of drought tolerance at early stage ofplant growth of wild barley (Hordeum vulgare L. ssp. spontaneum).Pakistan Journal of Botany, 43: 475-486.

Vanhala T, Van Rijn C, Buntjer J, Stam P, Nevo E, Poorter H, Van Eeuwijk F,2004. Environmental, phenotypic and genetic variation of wild barley(Hordeum spontaneum) from Israel. Euphytica, 137: 297-309.

Varshney RK, Chabane K, Hendre PS, Aggarwal RK, Graner A, 2007.Comparative assessment of EST-SSR, EST-SNP and AFLP markers forevaluation of genetic diversity and conservation of genetic resources us-ing wild, cultivated and elite barleys. Plant Science, 173: 638-649.

Volis S, Mendlinger S, Orlovsky N, 2000. Variability in phenotypic traits incore and peripheral populations of wild barley Hordeum spontaneumKoch. Hereditas, 133: 235-247.

Volis S, Mendlinger S, Turuspekov Y, Esnazarov U, 2002. Phenotypic andallozyme variation in Mediterranean and desert populations of wild bar-ley, Hordeum spontaneum Koch. Evolution, 56: 1403-1415.

Volis S, Verhoeven KJF, Mendlinger S, Ward D, 2004. Phenotypic selectionand regulation of reproduction in different environments in wild barley.Journal of Evolutionary Biology, 17: 1121-1131.

Wang A, Yu Z, Ding Y, 2009. Genetic diversity analysis of wild close rela-tives of barley from Tibet and the Middle East by ISSR and SSR markers.Comptes Rendus Biologies, 332: 393-403.

Wei YM, Baum BR, Nevo E, Zheng YL, 2005. Does domestication mimicspeciation? (I): A population-genetic analysis of Hordeum spontaneumand Hordeum vulgare based on AFLP and evolutionary considerations.Canadian Journal of Botany, 83: 1496-1512.

Wu D, Qiu L, Xu L, Ye L, Chen M, Sun D, Chen Z, Zhang H, Jin X, Dai F,2011. Genetic variation of HvCBF genes and their association with salin-ity tolerance in Tibetan annual wild barley. PLOS ONE, 6(7): e22938.

Xu TW, 1982. Origin and evolution of cultivated barley in China. ActaGenetica Sinica, 9: 440-446.

Yan J, Chen G, Cheng J, Nevo E, Gutterman Y, 2008. Phenotypic variation incaryopsis dormancy and seedling salt tolerance in wild barley, Hordeumspontaneum, from different habitats in Israel. Genetic Resources andCrop Evolution, 55: 995-1005.

Yan J, Wang F, Qin HB, Chen GX, Nevo E, Fahima T, Cheng JP, 2011. Nat-ural variation in grain selenium concentration of wild barley, Hordeumspontaneum, populations from Israel. Biological Trace Element Research,142: 773-786.

Yang Z, Zhang T, Bolshoy A, Beharav A, Nevo E, 2009. Adaptive microcli-matic structural and expressional dehydrin 1 evolution in wild barley,Hordeum spontaneum, at 'Evolution Canyon', Mount Carmel, Israel.Molecular Ecology, 18: 2063-2075.

Yin YQ, Ma DQ, Ding Y, 2003. Analysis of genetic diversity of hordein inwild close relatives of barley from Tibet. Theoretical and Applied Genet-ics, 107: 837-842.

Yun SJ, Gyenis L, Bossolini E, Hayes PM, Matus I, Smith KP, Steffenson BJ,Tuberosa R, Muehlbauer GJ, 2006. Validation of quantitative trait loci formultiple disease resistance in barley using advanced backcross lines de-veloped with a wild barley. Crop Science, 46: 1179-1186.

Zeller FJ, 1998. Improving cultivated barley (Hordeum vulgare L.) by mak-ing use of the genetic potential of wild Hordeum species. Journal of Ap-plied Botany—Angewandte Botanik, 72: 162-167.

Zhang F, Chen G, Huang Q, Orion O, Krugman T, Fahima T, Korol AB,Nevo E, Gutterman Y, 2005. Genetic basis of barley caryopsis dormancyand seedling desiccation tolerance at the germination stage. Theoreticaland Applied Genetics, 110: 445-453.

Zohary D, Hopf M, Weiss E, 2012. Domestication of Plants in the Old World:The Origin and Spread of Domesticated Plants in Southwest Asia, Europe,and the Mediterranean Basin. Oxford University Press, Oxford, pp. 9-58.S512.3