DOI: 10.3724/SP.J.1141.2013.02070

Zoological Research (动物学研究) 2013/34:2 PP.70-76

Molecular evidence on the phylogenetic position of tree shrews

The tree shrew is currently located in the Order Scandentia and is widely distributed in Southeast Asia, South Asia, and South China. Due to its unique characteristics, such as small body size, high brain-to-body mass ratio, short reproductive cycle and life span, and low-cost of maintenance, the tree shrew has been proposed as an alternative experimental animal to primates in biomedical research. However, there is unresolved debate regarding the phylogenetic affinity of tree shrews to primates and their phylogenetic position in Euarchontoglires. To help settle this debate, we summarized the available molecular evidence on the phylogenetic position of the tree shrew. Most nuclear DNA data, including recent genome data, suggested that the tree shrew belongs to the Euarchonta clade harboring primates and flying lemurs (colugos). However, analyses of mitochondrial DNA (mtDNA) data suggested a close relationship to lagomorphs and rodents. These different clustering patterns could be explained by nuclear gene data and mtDNA data discrepancies, as well as the different phylogenetic approaches used in previous studies. Taking all available conclusions together, the robust data from whole genome of this species supports tree shrews being genetically closely related to primates.

Key words:Tree shrew,Phylogenetic,Nuclear DNA,Mitochondria DNA

ReleaseDate:2015-04-16 19:34:16

Adkins RM, Honeycutt RL. 1991. Molecular phylogeny of the superorder Archonta. Proc Natl Acad Sci USA, 88(22): 10317-10321.

Allard MW, McNiff BE, Miyamoto MM. 1996. Support for interordinal eutherian relationships with an emphasis on primates and their Archontan relatives. Mol Phyl Evol, 5(1): 78-88.

Amrine-Madsen H, Koepfli KP, Wayne RK, Springer MS. 2003. A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol Phyl Evol, 28(2): 225-240.

Arnason U, Gullberg A, Janke A. 1999. The mitochondrial DNA molecule of the aardvark, Orycteropus afer, and the position of the Tubulidentata in the eutherian tree. Proc R Soc Lond B, 266(1417): 339-345.

Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu XF, Janke A. 2002. Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA, 99(12): 8151-8156.

Bailey WJ, Slightom JL, Goodman M. 1992. Rejection of the 'flying primate' hypothesis by phylogenetic evidence from the epsilon-globin gene. Science, 256(5053): 86-89.

Butler PM. 1972. The Problem of Insectivore Classification. Edinburgh: Oliver & Boyd.

Carlsson A. 1922. Über die tupaiidae und ihre beziehungen zu den insectivora und den prosimiae. Acta Zoologica, 3(2-3): 227-270.

Corbett GB, Hill JE. 1992. The Mammals of the Indomalay Region: A Systematic Review. Oxford: Natural History Museum Publications; Oxford University Press.

Davis DD. 1938. Notes on the anatomy of the treeshrew dendrogale// Davis DD. Chicago: Field Museum of Natural History: 383–404

Derchia AM, Gissi C, Pesole G, Saccone C, Arnason U. 1996. The guinea-pig is not a rodent. Nature, 381(6538): 597-600.

Fan Y, Huang Z-Y, Cao C-C, Chen C-S, Chen Y-X, Fan D-D, He J, Hou H-L, Hu L, Hu X-T, Jiang X-T, Lai R, Lang Y-S, Liang B, Liao S-G, Mu D, Ma Y-Y, Niu Y-Y, Sun X-Q, Xia J-Q, Xiao J, Xiong Z-Q, Xu L, Yang L, Zhang Y, Zhao W, Zhao X-D, Zheng Y-T, Zhou J-M, Zhu Y-B, Zhang G-J, Wang J, Yao Y-G. 2013. Genome of the Chinese tree shrew, a rising model animal genetically related to primates. Nat Commun., 4: 1426. (DOI: 10.1038/ncomms2416)

Gray JE. 1825. An outline of an attempt at the disposition of Mammalia into tribes and families, with a list of the genera apparently appertaining to each tribe. Ann. Phil, 10: 337–343.

Hallström BM, Janke A. 2010. Mammalian evolution may not be strictly bifurcating. Mol Biol Evol, 27(12): 2804-2816.

Helgen KM. 2005. Order scandentia// Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd ed. Maryland: Johns Hopkins University Press: 104-109.

Hudelot C, Gowri-Shankar V, Jow H, Rattray M, Higgs PG. 2003. RNA-based phylogenetic methods: application to mammalian mitochondrial RNA sequences. Mol Phyl Evol, 28(2): 241-252.

Jane?ka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ. 2007. Molecular and genomic data identify the closest living relative of primates. Science, 318(5158): 792-794.

Jiao JL, Liu RW, Chen LL, LI B, He BL, Zheng H, Shen PQ. 2009. The development and use of tree shrew resource and its standards research-the strategic discussion for laboratory animal resource development in China. Chin J Comp Med, 19(7): 73-78. [角建林, 刘汝文, 陈丽玲, 李波, 何保丽, 郑红, 沈培清. 2009. 树鼩资源的开发利用与标准化研究――我国实验动物资源建设发展战略探讨. 中国比较医学杂志, 19(7): 73-78.]

Jow H, Hudelot C, Rattray M, Higgs PG. 2002. Bayesian Phylogenetics Using an RNA Substitution Model Applied to Early Mammalian Evolution. Mol Biol Evol, 19(9): 1591-1601.

Killian JK, Buckley TR, Stewart N, Munday BL, Jirtle RL. 2001. Marsupials and Eutherians reunited: genetic evidence for the Theria hypothesis of mammalian evolution. Mamm Genome, 12(7): 513-517.

Krettek A, Gullberg A, Arnason U. 1995. Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, Erinaceus europaeus, and the phylogenetic position of the Lipotyphla. J Mol Evol, 41(6): 952-957.

Kriegs JO, Churakov G, Jurka J, Brosius J, Schmitz J. 2007. Evolutionary history of 7SL RNA-derived SINEs in Supraprimates. Trends Genet, 23(4): 158-161.

Le Gros CWE. 1924. On the brain of the tree-shrew (Tupaia minor). Proc Zool Soc London, 94(4): 1053-1074.

Lin YH, Waddell PJ, Penny D. 2002. Pika and vole mitochondrial genomes increase support for both rodent monophyly and glires. Gene, 294(1-2): 119-129.

Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J, Jordan G, Mauceli E, Ward LD, Lowe CB, Holloway AK, Clamp M, et al. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 478(7370): 476-482.

Liu FGR, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, Gugel KF. 2001. Molecular and morphological supertrees for eutherien (placental) mammals. Science, 291 (5509): 1786-1789.

Luckett WP. 1980. The Suggested Evolutionary Relationships and Classification of Tree Shrews. New York & London: Plenum Press.

Madsen O, Scally M, Douady CJ, Kao DJ, DeBry RW, Adkins R, Amrine HM, Stanhope MJ, de Jong WW, Springer MS. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature, 409(6820): 610-614.

Meredith RW, Jane?ka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ. 2011. Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science, 334(6055): 521-524.

Miyamoto MM. 1996. A congruence study of molecular and morphological data for Eutherian mammals. Mol Phyl Evol, 6(3): 373-390.

Müller S, Stanyon R, O’Brien PCM, Ferguson-Smith MA, Plesker R, Wienberg J. 1999. Defining the ancestral karyotype of all primates by multidirectional chromosome painting between tree shrews, lemurs and humans. Chromosoma, 108(6): 393-400.

Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS. 2001. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science, 294(5550): 2348-2351.

Nie WH, Fu BY, O'Brien PCM, Wang JH, Su WT, Tanomtong A, Volobouev V, Ferguson-Smith MA, Yang FT. 2008. Flying lemurs-The 'flying tree shrews'? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade. BMC Biology, 6(1): 18.

Nishihara H, Terai Y, Okada N. 2002. Characterization of novel Alu- and tRNA-related SINEs from the tree shrew and evolutionary implications of their origins. Mol Biol Evol, 19(11): 1964-1972.

Novacek MJ. 1992. Mammalian Phylogeny-Shaking the Tree. Nature, 356(6365): 121-125.

Olson LE, Sargis EJ, Martin RD. 2004. Phylogenetic Relationships Among Treeshrews (Scandentia): A Review and Critique of the Morphological Evidence. J Mamm Evol, 11(1): 49-71.

Olson LE, Sargis EJ, Martin RD. 2005. Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phyl Evol, 35(3): 656-673.

Peng YZ, Ye ZZ, Zou RJ, Wang YX, Tian BP, Ma YY, Shi LM. 1991. Biology of Chinese Tree Shrews (Tupaia Belangeri Chinensis). Kunming: Yunnan Science and Technology Press. [彭燕章, 叶智章, 邹如金, 王应祥, 田保平, 马原野, 施立明. 1991. 树鼩生物学. 昆明: 云南科技出版社.]

Porter CA, Goodman M, Stanhope MJ. 1996. Evidence on mammalian phylogeny from sequences of exon 28 of the von Willebrand factor gene. Mol Phyl Evol, 5(1): 89-101.

Previc FH. 2009. The Dopaminergic Mind in Human Evolution and History. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi: Cambridge University Press.

Rasmussen AS, Janke A, Arnason U. 1998. The mitochondrial DNA molecule of the hagfish (Myxine glutinosa) and vertebrate phylogeny. J Mol Evol, 46(4): 382-388.

Sargis EJ. 2004. New views on tree shrews: The role of Tupaiids in primate supraordinal relationships. Evolutionary Anthropology: Issues, News Rev, 13(2): 56-66.

Schmitz J, Ohme M, Zischler H. 2000. The complete mitochondrial genome of Tupaia belangeri and the phylogenetic affiliation of Scandentia to other eutherian orders. Mol Biol Evol, 17(9): 1334-1343.

Shen PQ, Zheng H, Liu RW, Chen LL, Li B, He BL, Li JT, Ben KL, Cao YM, Jiao JL. 2011. Progress and prospect in research on laboratory tree shrew in China. Zool Res, 32(1): 109-114. [沈培清, 郑红, 刘汝文, 陈丽玲, 李波, 何保丽, 李进涛, 贲昆龙, 曹筱梅, 角建林. 2011. 中国树鼩实验动物化研究进展和展望. 动物学研究, 32(1): 109-114.]

Shoshani J, Groves CP, Simons EL, Gunnell GF. 1996. Primate phylogeny: morphological vs molecular results. Mol Phyl Evol, 5(1): 102-154.

Simpson GG. 1945. The principles of classification and a classification of Mammals. Bull Amer Mus Nat Hist, 85: 1-350.

Song S, Liu L, Edwards SV, Wu S. 2012. Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. Proc Natl Acad Sci USA, 109(37): 14942-14947.

Waddell PJ, Shelley S. 2003. Evaluating placental inter-ordinal phylogenies with novel sequences including RAG1, gamma-fibrinogen, ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and codon models. Mol Phylogenet Evol, 28(2): 197-224.

Wang YX. 1987. Taxonomic research on Burma-Chinese tree shrew, Tupaia belangeri (Wagner), from Southern China. Zool Res, 8(3): 213-230. [王应祥. 1987. 中国树鼩的分类研究. 动物学研究, 8(3): 213-230.]

Xu L, Chen S-Y, Nie W-H, Jiang X-L, Yao Y-G. 2012. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. J Genet Genomics, 39(3): 131-137.

Xu L, Zhang Y, Liang B, Lü L-B, Chen C-S, Chen Y-B, Zhou J-M, Yao Y-G. 2013. The tree shrew under the spot light: emerging models of human diseases. Zool Res, 34(2): 59-69. [徐林, 张云, 梁斌, 吕龙宝, 陈策实, 陈勇彬, 周巨民, 姚永刚. 2013. 树鼩实验动物和人类疾病的树鼩模型研究概述. 动物学研究, 34(2):59-69. ]

Zardoya R, Meyer A. 1997. The complete DNA sequence of the mitochondrial genome of a "living fossil," the coelacanth (Latimeria chalumnae). Genetics, 146(3): 995-1010.

Zeller UA. 1986. Ontogeny and cranial morphology of the tympanic region of the Tupaiidae, with special reference to Ptilocercus. Folia Primatol (Basel), 47(2-3): 61-80.