doi:

DOI: 10.3724/SP.J.1141.2013.E02E62

Zoological Research (动物学研究) 2013/34:2 PP.E62-E68

Characterization of 12 polymorphic microsatellite markers in the Chinese tree shrew (Tupaia belangeri chinensis)


Abstract:
The Chinese tree shrew (Tupaia belangeri chinensis) is a small experimental animal with a close affinity to primates. This species has long been proposed to be an alternative experimental animal to primates in biomedical research. Despite decades of study, there is no pure breed for this animal, and the overall genetic diversity of wild tree shrews remains largely unknown. In order to obtain a set of genetic markers for evaluating the genetic diversity of tree shrew wild populations and tracing the lineages in inbreeding populations, we developed 12 polymorphic microsatellite markers from the genomic DNA of the tree shrew. An analysis of a wild population of 117 individuals collected from the suburb of Kunming, China, showed that these loci exhibited a highly expected heterozygosity (0.616). These 12 microsatellites were sufficient for individual identification and parentage analysis. The microsatellite markers developed in this study will be of use in evaluating genetic diversity and lineage tracing for the tree shrew.

Key words:Chinese tree shrew,Microsatellite,Heterozygosity,Individual identification,Parentage testing

ReleaseDate:2015-04-16 19:34:20



Arnason U, Adegoke JA, Bodin K, Born EW, Esa YB, Gullberg A, Nilsson M, Short RV, Xu X, Janke A. 2002. Mammalian mitogenomic relationships and the root of the eutherian tree. Proc Natl Acad Sci USA, 99(12): 8151-8156.

Behl R, Sheoran N, Behl J, Tantia MS, Vijh RK. 2002. Microsatellite sequences of mammals and their applications in genome analysis in pigs: A review. Asian Austral J Anim, 15(12): 1822-1830.

Butler JM. 2005. Forensic DNA Typing: Biology, Technology and Genetics of STR Markers. New York: Elsevier Academic Press.

Cao J, Yang EB, Su JJ, Li Y, Chow P. 2003. The tree shrews: adjuncts and alternatives to primates as models for biomedical research. J Med Primatol, 32(3): 123-130.

Chapuis MP, Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol, 24(3): 621-631.

Chen SY, Xu L, Lu LB, Yao YG. 2011. Genetic diversity and matrilineal structure in Chinese tree shrews inhabiting Kunming, China. Zool Res, 32(1): 17-23.

Dakin EE, Avise JC. 2004. Microsatellite null alleles in parentage analysis. Heredity, 93(5): 504-509.

Fuchs E, Corbach-Söhle S. 2010. Tree Shrews // The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals. Oxford: Wiley-Blackwell, 262-275.

Goldstein DB, Roemer GW, Smith DA, Reich DE, Bergman A, Wayne RK. 1999. The use of microsatellite variation to infer population structure and demographic history in a natural model system. Genetics, 151(2): 797-801.

He BL, Shen PQ, Chen LL, Jiao JL, Liu RW, Li B, Zheng H, Li ML. 2009. Polymorphism microsatellites in tree shrews (Tupaia belangeri chinensis). Acta Lab Anim Sci Sin, 17(2): 143-145 (in Chinese).

Helgen KM. 2005. Order Scandentia // Wilson DE, Reeder DM. Mammal Species of the World: A Taxonomic and Geographic Reference. Maryland: Johns Hopkins University Press, 104-109.

Janecka JE, Miller W, Pringle TH, Wiens F, Zitzmann A, Helgen KM, Springer MS, Murphy WJ. 2007. Molecular and genomic data identify the closest living relative of primates. Science, 318(5851): 792-794.

Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol, 16(5): 1099-1106.

Killian JK, Buckley TR, Stewart N, Munday BL, Jirtle RL. 2001. Marsupials and Eutherians reunited: genetic evidence for the Theria hypothesis of mammalian evolution. Mamm Genome, 12(7): 513-517.

Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, Kheradpour P, Ernst J, Jordan G, Mauceli E, Ward LD, Lowe CB, Holloway AK, Clamp M, Gnerre S, Alfoldi J, Beal K, Chang J, Clawson H, Cuff J, Di Palma F, Fitzgerald S, Flicek P, Guttman M, Hubisz MJ, Jaffe DB, Jungreis I, Kent WJ, Kostka D, Lara M, Martins AL, Massingham T, Moltke I, Raney BJ, Rasmussen MD, Robinson J, Stark A, Vilella AJ, Wen J, Xie X, Zody MC, Baldwin J, Bloom T, Chin CW, Heiman D, Nicol R, Nusbaum C, Young S, Wilkinson J, Worley KC, Kovar CL, Muzny DM, Gibbs RA, Cree A, Dihn HH, Fowler G, Jhangiani S, Joshi V, Lee S, Lewis LR, Nazareth LV, Okwuonu G, Santibanez J, Warren WC, Mardis ER, Weinstock GM, Wilson RK, Delehaunty K, Dooling D, Fronik C, Fulton L, Fulton B, Graves T, Minx P, Sodergren E, Birney E, Margulies EH, Herrero J, Green ED, Haussler D, Siepel A, Goldman N, Pollard KS, Pedersen JS, Lander ES, Kellis M. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature, 478(7370): 476-482.

McBrien NA, Norton TT. 1992. The development of experimental myopia and ocular component dimensions in monocularly lid-sutured tree shrews (Tupaia belangeri). Vision Res, 32(5): 843-852.

Munshi-South J, Harpending H. 2008. Female-biased dispersal and gene flow in a behaviorally monogamous mammal, the large treeshrew (Tupaia tana). PLoS One, 3(9): e3228.

Munshi-South J, Wilkinson GS. 2006. Isolation and characterization of polymorphic microsatellite loci in Bornean treeshrews (Tupaia spp.). Mol Ecol Notes, 6(3): 698-699.

Niu Y, Liang S. 2009. Genetic differentiation within the inbred C57BL/6J mouse strain. J Zool, 278(1): 42-47.

Olson LE, Sargis EJ, Martin RD. 2005. Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol, 35(3): 656-673.

Peng YZ, Ye ZZ, Zou RJ, Wang YX, Tian BP, Ma YY, Shi LM. 1991. Biology of Chinese Tree Shrews (Tupaia belangeri chinensis). Kunming, China: Yunnan Science and Technology Press.

Schlöetterer C, Pemberton J. 1994. The use of microsatellites for genetic analysis of natural populations. – In: Schierwater B, Streit B, Wagner GP & DeSalle R (Eds). Molecular ecology and evolution: approaches and applications. Experientia Supplementum 69. Birkhäuser Verlag Basel, Switzerland, pp. 203-214

Shi YY, He L. 2005. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res, 15(2): 97-98.

Srikwan S, Hufford K, Eggerf L, Woodruff DS. 2002. Variable microsatellite markers for genotyping tree shrew, tupaia, and their potential use in genetic studies of fragmented populations. Science Asia, 28(2): 93-97.

Thomas M, Ihle S, Ravaoarimanana I, Kraechter S, Wiehe T, Tautz D. 2005. Microsatellite variability in wild populations of the house mouse is not influenced by differences in chromosomal recombination rates. Biol J Linn Soc, 84(3): 629-635.

van Kampen M, Kramer M, Hiemke C, Flugge G, Fuchs E. 2002. The chronic psychosocial stress paradigm in male tree shrews: evaluation of a novel animal model for depressive disorders. Stress, 5(1): 37-46.

Waits L, Taberlet P, Swenson JE, Sandegren F, Franzen R. 2000. Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol Ecol, 9(4): 421-431.

Waits LP, Paetkau D. 2005. Noninvasive genetic sampling tools for wildlife biologists: A review of applications and recommendations for accurate data collection. J Wildlife Manage, 69(4): 1419-1433.

Waits LP, Luikart G, Taberlet P. 2001. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol, 10(1): 249-256.

Wang J, Zhou QX, Tian M, Yang YX, Xu L. 2011. Tree shrew models: a chronic social defeat model of depression and a one-trial captive conditioning model of learning and memory. Zool Res, 32(1): 24-30.

Wang YX. 1987. Taxonomic research on Burma-Chinese tree shrew, Tupaia belangeri (Wagner), from Southern China. Zool Res, 8(3): 213-230 (in Chinese).

Xu L, Chen SY, Nie WH, Jiang XL, Yao YG. 2012. Evaluating the phylogenetic position of Chinese tree shrew (Tupaia belangeri chinensis) based on complete mitochondrial genome: implication for using tree shrew as an alternative experimental animal to primates in biomedical research. J Genet Genomics, 39(3): 131-137.

Xu L, Fan Y, Jiang XL, Yao YG. 2013a. Molecular evidence on the phylogenetic position of tree shrew (Tupia belangeri). Zool Res, 34 (2):70-76.

Xu L, Zhang Y, Liang B, Lv LB, Chen CS, Chen Y-B, Zhou JM, Yao YG. 2013b. Tree shrew under the spot light: emerging model of human diseases. Zool Res, 34 (2):59-69.

Yan RQ, Su JJ, Huang DR, Gan YC, Yang C, Huang GH. 1996a. Human hepatitis B virus and hepatocellular carcinoma. I. Experimental infection of tree shrews with hepatitis B virus. J Cancer Res Clin Oncol, 122(5): 283-288.

Yan RQ, Su JJ, Huang DR, Gan YC, Yang C, Huang GH. 1996b. Human hepatitis B virus and hepatocellular carcinoma. II. Experimental induction of hepatocellular carcinoma in tree shrews exposed to hepatitis B virus and aflatoxin B1. J Cancer Res Clin Oncol, 122(5): 289-295.

Yeh FC, Boyle TJB. 1997. Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot, 129(2): 157.

Zajc I, Mellersh CS, Sampson J. 1997. Variability of canine microsatellites within and between different dog breeds. Mamm Genome, 8(3): 182-185.