doi:

DOI: 10.3724/SP.J.1006.2018.01212

Acta Agronomica Sinica (作物学报) 2018/44:8 PP.1212-1220

Effects of CO2 Concentrations on Stomatal Traits and Gas Exchange in Leaves of Soybean


Abstract:
Seven concentrations treatments (400, 600, 800, 1000, 1200, 1400, and 1600 μmol mol-1) were designed to investigate the effects of atmospheric CO2 concentrations on the stomatal traits and leaf gas exchange of soybean. We found that elevating CO2 concentrations significantly decreased the stomatal density of adaxial side and the stomatal area index of both the adaxial and abaxial sides. Meanwhile, the spatial distribution pattern analysis of stomata with the Ripley's K function showed that the spatial distribution pattern of stomata on leaf surfaces of soybean was highly scale-dependent. The most regular distribution pattern of stomata on the abaxial surface was found under the CO2 concentration of 400 μmol mol-1, and the increase of CO2 concentration resulted in irregular distribution pattern of stomata on the abaxial surface of soybean leaves. In contrast to the abaxial surface, elevating CO2 concentrations made the spatial distribution pattern of stomata more regular on the adaxial leaf surface, which was evidenced by lower minimal Lhat(d) values under elevated CO2 concentrations than those under CO2 concentration of 400 μmol mol-1. Although the response of stomatal traits to atmospheric CO2 concentration was obviously different between the adaxial and abaxial surfaces of leaves, soybean plants could alter leaf gas exchange through adjusting the morphological traits and the spatial distribution pattern of stomata. These results may be helpful for further understanding potential mechanisms concerning about the elevating CO2 effect on the leaf gas exchange of soybean plants from the view of stomatal traits.

Key words:CO2 concentration,soybean plants,stomatal structure and function,stomatal distribution pattern,leaf gas exchange

ReleaseDate:2019-11-05 15:29:16



[1] IPCC. Intergovernmental panel on climate change (2013) summary for policymakers. In:Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Bo-schung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013:The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, pp 225-248.

[2] Kim H Y, Lieffering M, Kobayashi K, Okada M, Shu M. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply:a free air CO2 enrichment (FACE) experiment. Global Change Biol, 2003, 9:826-837

[3] 李萍, 郝兴宇, 杨宏斌, 林而达. 大气CO2浓度升高对绿豆生长发育与产量的影响. 核农学报, 2011, 25:358-362 Li P, Hao X Y, Yang H B, Lin E D. Effects of air CO2 enrichment on growth and yield of mung bean. J Nucl Agric Sci, 2011, 25:358-362(in Chinese with English abstract)

[4] 于显枫, 张绪成, 王红丽. 高浓度CO2下氮素对小麦叶片干物质积累及碳氮关系的影响. 核农学报, 2012, 26:1058-1063 Yu X F, Zhang X C, Wang H L. Effects of nitrogen on the dry matter accumulation, carbon and nitrogen metabolism of wheat leaves under elevated atmospheric CO2 concentration. J Nucl Agric Sci, 2012, 26:1058-1063(in Chinese with English abstract)

[5] Bowes G. Facing the inevitable:plants and increasing atmospheric CO2. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44:309-332

[6] Woodward F I. Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature, 1987, 327:617-618

[7] Hetheringto A M, Woodward F I. The role of stomata in sensing and driving environmental change. Nature, 2003, 424:901-908

[8] 王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱. 降水与CO2浓度协同作用对短花针茅光合特性的影响. 植物生态学报, 2012, 36:597-606 Wang H, Zhou G S, Jiang Y L, Shi Y H, Xu Z Z. Interactive effects of changing precipitation and elevated CO2 concentration on photosynthetic parameters of Stipa breviflora. Chin J Plant Ecol, 2012, 36:597-606(in Chinese with English abstract)

[9] 孙谷畴, 赵平, 彭少麟, 曾小平. 在高CO2浓度下四种亚热带幼树光合作用对水分胁迫的响应. 生态学报, 2001, 21:738-746 Sun G C, Zhao P, Peng S L, Zeng X P. Response of photosynthesis to water stress in four saplings from subtropical forests under elevated atmospheric CO2 concentration. Acta Ecol Sin, 2001, 21:738-746(in Chinese with English abstract)

[10] 王建林, 温学发, 赵风华, 房全孝, 杨新民. CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响. 植物生态学报, 2012, 6:438-446 Wang J L, Wen X F, Zhao F H, Fang Q X, Yang X M. Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species. Chin J Plant Ecol, 2012, 6:438-446(in Chinese with English abstract)

[11] Farquhar G D, Von Caemmerer S, Berry J A. Models of photosynthesis. Plant Physiol, 2001, 125:42-45

[12] Reeves D W, Rogers H H, Prior S A, Wood C W, Runion G B. Elevated atmospheric carbon dioxide effects on sorghum and soybean nutrient status. J Plant Nutr, 1994, 17:1939-1954

[13] 翟志席, 郭玉海, 马永泽, 柏长青. 植物生态生理学. 北京:中国农业大学出版社, 1997, pp 60-66 Zhai Z X, Guo Y H, Ma Y Z, Bai C Q. Plant Ecophysiology. Beijing:China Agricultural University Press, 1997. pp 60-66(in Chinese)

[14] Apple M E, Olszyk D M, Ormrod D P, Lewis J, Southworth D, Tinqey D T. Morphology and stomatal function of douglas fir needles exposed to climate change:elevated CO2 and temperature. Int J Plant Sci, 2000, 161:127-132

[15] Kouwenberg L L R, Kurschner W M, Mcelwain J C. Stomatal frequency change over altitudinal gradients:prospects for paleoaltimetry. Rev Mineral Geochem, 2007, 66:215-241

[16] Fraser L H, Greenall A, Carlyle C, Turkington R, Friedman C R. Adaptive phenotypic plasticity of Pseudoroegneria spicata:response of stomatal density, leaf area and biomass to changes in water supply and increased temperature. Ann Bot, 2009, 103:769-775

[17] Polly H W, Johnson H B, Mayeux H S. Carbon dioxide and water fluxes of C3 and C4 perennials at subambient CO2 concentrations. Funct Ecol, 1992, 6:693-703

[18] Xu M. The optimal atmospheric CO2 concentration for the growth of winter wheat. J Plant Physiol, 2015, 184:89-97

[19] Croxdale J L. Stomatal patterning in angiosperms. J Bot, 2000, 87:1069-1080

[20] Shpak E D, Mcabee J M, Pillitteri L J, Ku T. Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science, 2005, 309:290-293

[21] 孙成明, 庄恒扬, 杨连新, 杨洪建, 黄建晔, 董桂春, 朱建国, 王余龙. FACE水稻生育期模拟. 生态学报, 2007, 27:613-619 Sun C M, Zhuang H Y, Yang L X, Yang H J, Huang J Y, Dong G C, Zhu J G, Wang Y L. A simulation of growth duration FACE rice. Acta Ecol Sin, 2007, 27:613-619(in Chinese with English abstract)

[22] 蒋跃林, 张庆国, 岳伟, 姚玉刚, 王公明. 大气CO2浓度升高对大豆生长和产量的影响. 中国农学通报, 2005, 21:355-357 Jiang Y L, Zhang Q G, Yue W, Yao Y G, Wang G M. Effects of elevated atmospheric CO2 concentration on growth and yield of soybean. Chin Agric Sci Bull, 2005, 21:355-357(in Chinese with English abstract)

[23] 王修兰, 徐师华. CO2浓度倍增对大豆各生育期阶段的光合作用及干物质积累的影响. 作物学报, 1994, 20:520-527 Wang X L, Xu S H. Effect of CO2 concentration doubling on photosynthesis and dry matter production in different growth stages of soybean plant. Acta Agron Sin, 1994, 20:520-527(in Chinese with English abstract)

[24] Zheng Y P, Xu M, Hou R X, Shen R C, Qiu S, Ou-Yang Z. Effects of experimental warming on stomatal traits in leave s of maize (Zea may L.). Ecol Evol, 2013, 3:3095-3111

[25] 张绪成, 于显枫, 高世铭. 高大气CO2浓度下氮素对小麦叶片光能利用的影响. 植物生态学报, 2010, 34:1196-1203 Zhang X C, Yu X F, Gao S M. Effects of nitrogen application rates on photosynthetic energy utilization in wheat leaves under elevated atmospheric CO2 concentration. Chin J Plant Ecol, 2010, 34:1196-1203(in Chinese with English abstract)

[26] 张绪成, 于显枫, 马一凡, 上官周平. 高大气CO2浓度下小麦旗叶光合能量利用对氮素和光强的响应. 生态学报, 2011, 31:1046-1057 Zhang X C, Yu X F, Ma Y F, Shang-Guan Z P. The responses of photosynthetic energy use in wheat flag leaves to nitrogen application rates and light density under elevated atmospheric CO2 concentration. Acta Ecol Sin, 2011, 31:1046-1057(in Chinese with English abstract)

[27] Teng N J, Wang J, Chen T, Wang Y, Lin J. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol, 2006, 172:92-103

[28] Kruse J, Hetzger I, Mai C, Polle A, Rennenberg H. Elevated CO2 affects N-metabolism of young poplar plants (Populus tremula×P. alba) differently at deficient and sufficient N-supply. New Phytol, 2003, 157:65-81

[29] 朱玉, 黄磊, 党承华, 王贺新, 姜国斌, 李根柱, 张子川, 娄鑫, 郑云普. 高温对蓝莓叶片气孔特征和气体交换参数的影响. 农业工程学报, 2016, 32(1):218-225 Zhu Y, Huang L, Dang C H, Wang H X, Jiang G B, Li Y Z, Zhang Z C, Lou X, Zheng Y P. Effects of high temperature on leaf stomatal traits and gas exchange parameters of blueberry. Trans CSAE, 2016, 32(1):218-225(in Chinese with English abstract)

[30] 郑云普, 徐明, 王建书, 王贺新. 气候变暖对华北平原玉米叶片形态结构和气体交换过程的影响. 生态学报, 2016, 36:1526-1538 Zheng Y P, Xu M, Wang J S, Wang H X. Effects of future climate warming on the morphology, structure, and gas exchange of maize leaves in the North China Plain. Acta Ecol Sin, 2016, 36:1526-1538(in Chinese with English abstract)

[31] Amthor J S. Effects of atmospheric CO2 concentration on wheat yield:review of results from experiments using various approaches to control CO2 concentration. Field Crops Res, 2001, 84:1-34

[32] Cotrufo M F, Ineson P, Scott A. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biol, 1998, 4:43-54

[33] Donohue R J, Roderick M L, McVicar T R, Farquhar G D. Impact of CO2 fertilization on maximum foliage cover across the globe's warm arid environments. Geophys Res Lett, 2013, 40:3031-3035

[34] Field C B, Jackson R B, Mooney H A. Stomatal responses to increased CO2:implications from the plant to the global scale. Plant Cell Environ, 1995, 18:1214-1225

[35] JablonskiL M, Wang X, Curtis P S. Plant reproduction under elevated CO2 conditions:a meta-analysis of reports on 79 crop and wild species. New Phytol, 2002, 156:9-26

[36] Valle R M. Transpiration rate and water use efficiency of soybean leaves adapted to different CO2 environments. Crop Sci, 1985, 25:47-482

[37] Levine L H, Richards J T, Wheeler R M. Super-elevated CO2 interferes with stomatal response to ABA and night closure in soybean (Glycine max). J Plant Physiol, 2009, 166:903-913

[38] Bunce J A. Stomatal conductance, photosynthesis and respiration of temperate deciduous tree seedlings grown outdoors at an elevated concentration of carbon dioxide. Plant Cell Environ, 1992, 15:541-549

[39] Assmann S M, Shimazaki K I. The multisensory guard cell:stomatal responses to blue light and abscisic acid. J Plant Physiol, 1999, 119:809-815

[40] Kolla V A, Vavasseur A, Raghavendra A S. Hydrogen peroxide production is an early event during bicarbonate induced stomatal closure in abaxial epidermis of Arabidopsis. Planta, 2007, 225:1421-1429

[41] Morison J I L. Intercellular CO2 concentration and stomatal response to CO2. In:Zeiger E, Cowan I R, Farquhar G D, eds. Stomatal Function. California:Stanford University Press, 1987. pp 229-512