doi:

DOI: 10.3724/SP.J.1042.2014.00731

Advances in Psychological Science (心理科学进展) 2014/22:5 PP.731-745

Analyses of Mediating Effects: The Development of Methods and Models


Abstract:
Mediation models are frequently used in the research of psychology and other social science disciplines. Mediation indicates that the effect of an independent variable on a dependent variable is transmitted through a third variable, which is called mediator. In most applied research, Baron and Kenny's (1986) causal steps approach has been used to test mediating effect. In recent years, however, many methodological researchers questioned the rationality of the causal steps approach, and some of them even attempted to stop its use. Firstly, we clarify the queries on the causal steps approach one by one. Secondly, we propose a new procedure to analyze mediating effects. The new procedure is better than any single method that constitutes the procedure in terms of Type I error rate and power. The proposed procedure can be conducted by using observed variables and/or latent variables. Mplus programs are supplied for the procedure with observed variables and/or latent variables. Finally, this article introduces the development of mediation models, such as mediation model of ordinal variables, multilevel mediation, multiple mediation, moderated mediation, and mediated moderation.

Key words:mediating effect,indirect effect,causal steps approach,Bootstrap method,causality

ReleaseDate:2016-12-13 15:28:44



方杰, 温忠麟, 张敏强, 任皓. (2014). 基于结构方程模型的多层中介效应分析. 心理科学进展, 22, 530-539.

方杰, 温忠麟, 张敏强, 孙配贞. (印刷中). 基于结构方程模型的多重中介效应分析. 心理科学.

方杰, 张敏强. (2012). 中介效应的点估计和区间估计: 乘积分布法、非参数Bootstrap和MCMC法. 心理学报, 44, 1408-1420.

方杰, 张敏强, 邱皓政. (2010). 基于阶层线性理论的多层级中介效应. 心理科学进展, 18, 1329-1338.

侯杰泰, 温忠麟, 成子娟. (2004). 结构方程模型及其应用. 北京: 教育科学出版社.

刘红云, 张雷. (2005). 追踪数据分析方法及其应用. 北京: 教育科学出版社.

柳士顺, 凌文辁. (2009). 多重中介模型及其应用. 心理科学, 32, 433-435.

莫雷, 温忠麟, 陈彩琦. (2007). 心理学研究方法. 广州: 广东高等教育出版社.

温忠麟. (2009). 教育研究方法基础 (第2版). 北京: 高等教育出版社.

温忠麟, 侯杰泰, 张雷. (2005). 调节效应与中介效应的比较和应用. 心理学报, 37, 268-274.

温忠麟, 刘红云, 侯杰泰. (2012). 调节效应和中介效应分析. 北京: 教育科学出版社.

温忠麟, 叶宝娟. (2014). 有调节的中介模型检验方法: 竞争还是替补? 心理学报, 46, 714-726.

温忠麟, 张雷, 侯杰泰. (2006). 有中介的调节变量和有调节的中介变量. 心理学报, 38, 448-452.

温忠麟, 张雷, 侯杰泰, 刘红云. (2004). 中介效应检验程序及其应用. 心理学报, 36, 614-620.

吴艳, 温忠麟. (2011). 结构方程建模中的题目打包策略. 心理科学进展, 19, 1859-1867.

叶宝娟, 温忠麟. (2011). 单维测验合成信度三种区间估计的比较. 心理学报, 43, 453-461.

叶宝娟, 温忠麟. (2013). 有中介的调节模型检验方法: 甄别和整合. 心理学报, 45, 1050-1060.

Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51, 1173-1182.

Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect effects and moderated mediation in multilevel models: New procedures and recommendations. Psychological Methods, 11, 142-163.

Biesanz, J. C., Falk, C. F., & Savalei, V. (2010). Assessing mediational models: Testing and interval estimation for indirect effects. Multivariate Behavioral Research, 45(4), 661-701.

Cheung, G. W., & Lau, R. S. (2008). Testing mediation and suppression effects of latent variables: Bootstrapping with structural equation models. Organizational Research Methods, 11, 296-325.

Cheung, M. W. L. (2007). Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models. Structural Equation Modeling, 14, 227-246.

Clogg, C. C., Petkova, E., & Shihadeh, E. S. (1992). Statistical methods for analyzing collapsibility in regression models. Journal of Educational Statistics, 17(1), 51-74.

Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558-577.

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & analysis issues for field settings. MA: Houghton Mifflin.

Edwards, J. R., & Lambert, L. S. (2007). Methods for integrating moderation and mediation: A general analytical framework using moderated path analysis. Psychological Methods, 12, 1-22.

Fairchild, A. J., MacKinnon, D. P., Taborga, M. P., & Taylor, A. B. (2009). R2 effect-size measures for mediation analysis. Behavior Research Methods, 41, 486-498.

Freedman, L. S., & Schatzkin, A. (1992) Sample size for studying intermediate endpoints within intervention trails or observational studies. American Journal of Epidemiology, 136, 1148-1159.

Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological Science, 18, 233-239.

Fritz, M. S., Taylor, A. B., & MacKinnon, D. P. (2012). Explanation of two anomalous results in statistical mediation analysis. Multivariate Behavioral Research, 47, 61-87.

Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76, 408-420.

Hayes, A. F., & Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: Does method really matter? Psychological Science, 24, 1918-1927.

Iacobucci, D. (2008). Mediation analysis. Thousand Oaks, CA: Sage.

Iacobucci, D. (2012). Mediation analysis and categorical variables: The final frontier. Journal of Consumer Psychology, 22, 582-594.

Imai, K., Keele, L., & Tingley, D. (2010). A general approach to causal mediation analysis. Psychological Methods, 15, 309-334.

James, L. R., & Brett, J. M. (1984). Mediators, moderators, and tests for mediation. Journal of Applied Psychology, 69, 307-321.

Judd, C. M., & Kenny, D. A. (1981). Process analysis: Estimating mediation in treatment evaluations. Evaluation Review, 5, 602-619.

Kenny, D. A. (2003). “Mediation,” http://www.users.rcn.com/dakenny/mediate.htm/

Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower level mediation in multilevel models. Psychological Methods, 8, 115-128.

Lau, R. S., & Cheung, G. W. (2012). Estimating and comparing specific mediation effects in complex latent variable models. Organizational Research Methods, 15, 3-16.

Ledgerwood, A., & Shrout, P. E. (2011). The trade-off between accuracy and precision in latent variable models of mediation processes. Journal of Personality and Social Psychology, 101, 1174-1188.

Li, X., & Beretvas, S. N. (2013). Sample size limits for estimating upper level mediation models using multilevel SEM. Structural Equation Modeling, 20, 241-264.

Macho, S., & Ledermann, T. (2011). Estimating, testing, and comparing specific effects in structural equation models: The phantom model approach. Psychological Methods, 16, 34-43.

MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Mahwah, NJ: Erlbaum.

MacKinnon, D. P., & Fairchild, A. J. (2009). Current directions in mediation analysis. Current Directions in Psychological Science, 18, 16-20.

Mackinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593-614.

MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, confounding, and suppression effect. Prevention Science, 1, 173-181.

MacKinnon, D. P., Lockwood, C. M., Brown, C. H., Wang W., & Hoffman, J. M. (2007). The intermediate endpoint effect in logistic and probit regression. Clinical Trials, 4, 499-513.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological Methods, 7, 83-104.

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99-128.

MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A simulation study of mediated effect measures. Multivariate Behavioral Research, 30, 41-62.

Mathieu, J. E., & Taylor, S. R. (2006). Clarifying conditions and decision points for mediational type inferences in Organizational Behavior. Journal of Organizational Behavior, 27, 1031-1056.

Muller, D., Judd, C. M., & Yzerbyt, V. Y. (2005). When moderation is mediated and mediation is moderated. Journal of Personality and Social Psychology, 89(6), 852-863.

Muthén, L. K., & Muthén, B. O. (2012). Mplus user's guide (7th ed.). Los Angeles, CA: Muthén & Muthén.

Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Hoboken, NJ: Wiley.

Pituch, K. A., & Stapleton, L. M. (2008). The performance of methods to test upper-level mediation in the presence of nonnormal data. Multivariate Behavioral Research, 43(2), 237-267.

Pituch, K. A., Stapleton, L. M., & Kang, J. Y. (2006). A comparison of single sample and bootstrap methods to assess mediation in cluster randomized trials. Multivariate Behavioral Research, 41(3), 367-400.

Pituch, K. A., Whittaker, T. A., & Stapleton, L. M. (2005). A comparison of methods to test for mediation in multisite experiments. Multivariate Behavioral Research, 40, 1-23.

Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36, 717-731.

Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879-891.

Preacher, K. J., & Kelley, K. (2011) Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. Psychological Methods, 16, 93-115.

Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42, 185-227.

Preacher, K. J., Zhang, Z., & Zyphur, M. J. (2011). Alternative methods for assessing mediation in multilevel data: The advantages of multilevel SEM. Structural Equation Modeling, 18, 161-182.

Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15, 209-233.

Pregibon, D. (1981). Logistic regression diagnostics. The Annals of Statistics, 9, 705-724.

Rucker, D. D., Preacher, K. J., Tormala, Z. L., & Petty, R. E. (2011). Mediation analysis in social psychology: Current practices and new recommendations. Social and Personality Psychology Compass, 5, 359-371.

Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7, 422-445.

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. In S. Leinhardt (Ed.), Sociological methodology (pp. 290-312). Washington, DC: American Sociological Association.

Spencer, S. J., Zanna, M. P., & Fong, G. T. (2005). Establishing a causal chain: Why experiments are often more effective than mediational analyses in examining psychological processes. Journal of Personality and Social Psychology, 89, 845-851.

Stone-Romero, E. F., & Rosopa, P. J. (2008). The relative validity of inferences about mediation as a function of research design characteristics. Organizational Research Methods, 11, 326-352.

Taylor, A. B., MacKinnon, D. P., & Tein, J.-Y. (2008). Tests of the three-path mediated effect. Organizational Research Methods, 11, 241-269.

Tofighi, D., & MacKinnon, D. P. (2011). RMediation: An R package for mediation analysis confidence intervals. Behavior Research Methods, 43, 692-700.

Valeri, L., & VanderWeele, T. J. (2013). Mediation analysis allowing for exposure-mediator interactions and causal interpretation: Theoretical assumptions and implementation with SAS and SPSS macros. Psychological Methods, 18, 137-150.

Wen, Z. (Under review). Monotonicity of effect sizes: Comment on kappa-squared as mediation effect size measure.

Wen, Z., Marsh, H. W., & Hau, K. T. (2010). Structural equation models of latent interactions: An appropriate standardized solution and its scale-free properties. Structural Equation Modeling: 17, 1-22.

Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis. Psychological Methods, 14, 301-322.

Zhang, Z., Zyphur, M. J., & Preacher, K. J. (2009). Testing multilevel mediation using hierarchical linear models: Problems and solutions. Organizational Research Methods, 12, 695-719.

Zhao, X., Lynch Jr., J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. Journal of Consumer Research, 37, 197-206.