doi:

DOI: 10.3724/SP.J.1145.2010.00289

Chinese Journal of Appplied Environmental Biology (应用与环境生物学报) 2010/16:2 PP.289-293

Progress in Research of Insect orthodenticle Gene*


Abstract:
The embryogenesis of insect is controlled by a series of genes, which are turned on or off according to a precise time and spatial sequence to regulate the growth and differentiation of embryonic cells. Among these genes, orthodenticle (otd) encodes a regulatory transcription factor and plays a key role in embryogenesis of insect. In some insects without bicoid gene, otd partially substitutes for bicoid function and establishes the polarity of anterior-posterior axis in early embryogenesis. Furthermore, otd gene also involves in the process of cephalic segmentation, and developments of eyes and nervous system. At present, there are some insects about the otd gene function study, such as Drosophila melanogaster, Tribolium castaneum and Nasonia vitripennis, and it is very difference that the otd gene sequences, expression patterns and functions in the insects. In this paper, the otd gene is reviewed, including its structure, function and evolution throughout insects in order to provide an information frame for promoting the research of this gene. Fig 1, Ref 62

Key words:orthodenticle gene,insect,embryonic development,patterning formation,cephalic segmentation

ReleaseDate:2014-07-21 15:22:50

Funds:Supported by the National Natural Science Foundation of China (No. 30700435) and the Natural Science Foundation of Chongqing, China (Nos. CSTC2008BA5030, CSTC2009BB1387)



1 Dearden P, Akam M. Developmental evolution: Axial patterning in insects. Curr Biol, 1999, 9 (16): 591~594

2 Finkelstein R, Smouse D, Capaci TM, Spradling AC, Errimon NP. The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev, 1990, 4 (9): 1516~1527

3 Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, Apice MRD, Nigro V, Boncinelli E. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J, 1993, 12 (7): 2735~2747

4 Leuzinger S, Hirth F,Gerlich D, Acampora D, Simeone A, Gehring WJ, Finkelstein R, Furukubo-Tokunaga K, Reichert H. Equivalence of the fly orthodenticle gene and the human OTX genes in embryonic brain development of Drosophila. Development, 1998, 125 (9): 1703~1710

5 Simeone A, Puelles E, Acampora D. The Otx family. Curr Opin Genet Dev, 2002, 12 (4): 409~415

6 Li Y, Brown SJ, Hausdorf B, Tautz D, Denell RE, Finkelstein R. Two orthodenticle-related genes in the short-germ beetle Tribolium castaneum. Dev Genes Evol, 1996, 206: 35~45

7 Consortium HGS. Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006, 443 (7114): 931~949

8 Lynch J A, Brent AE, Leaf DS, Pultz MA, Desplan C. Localized maternal orthodenticle patterns anterior and posterior in the long germ wasp Nasonia. Nature, 2006, 439 (7077): 728~732

9 FrancksC, Fisher SE, Olson RK, Pennington BF, Smith SD, DeFries JC, Monaco AP. Fine mapping of the chromosome 2p12-16 dyslexia susceptibility locus: Quantitative association analysis and positional candidate genes SEMA4F and OTX1. Psychiatr Genet, 2002, 12 (1): 35~41

10 Frantz GD,. Weimann JM, Levin ME, McConnell SK. Otx1 and Otx2 define layers and regions in developing cerebral cortex and cerebellum. J Neurosci, 1994, 14 (10): 5725~5740

11 Blitz IL, Cho KW. Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle. Development, 1995, 121 (4): 993~1004

12 Li Y, Allende ML, Finkelstein R, Weinberg ES. Expression of two zebrafish orthodenticle-related genes in the embryonic brain. Mech Dev, 1994, 48 (3): 229~244

13 Mori H, Miyazaki Y, Morita T, Nitta H, Mishina M. Different spatio-temporal expressions of three otx homeoprotein transcripts during zebrafish embryogenesis. Brain Res Mol Brain Res, 1994, 27 (2): 221~231

14 Lemaire L, Kessel M. Gastrulation and homeobox genes in chick embryos. Mech Dev, 1997, 67 (1): 3~16

15 Bally-Cuif L, Gulisano M, Broccoli V, Boncinelli E. c-otx2 is expressed in two different phases of gastrulation and is sensitive to retinoic acid treatment in chick embryo. Mech Dev, 1995, 49 (1~2): 49~63

16 Gan L, Mao CA, Wikramanayake A, Angerer LM, Angerer RC, Klein WH. An orthodenticle-related protein from Strongylocentrotus purpuratus. Dev Biol, 1995, 167 (2): 517~528

17 Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E. Nested expression domains of four homeobox genes in developing rostral brain. Nature, 1992, 358 (6388): 687~690

18 Lynch J, Desplan C. Evolution of development: beyond bicoid. Curr Biol, 2003, 13 (14): 557~559

19 Rivera-Pomar R, Jackle H. From gradients to stripes in Drosophila embryogenesis: Filling in the gaps. Trends Genet, 1996, 12 (11): 478~483

20 Zhang QW (张青文). Insect Genetics. Beijing, China. Science Press (北京: 科学出版社), 2000

21 Davis GK, Patel NH. Short, long, and beyond: Molecular and embryological approaches to insect segmentation. Annu. Rev Entomol, 2002, 47: 669~699

22 Nüsslein-Volhard C, Frohnhöfer HG, Lehmann R. Determination of anteroposterior polarity in Drosophila. Science, 1987, 238: 1675~1681

23 St Johnston D, Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell, 1992, 68: 201~219

24 Frohnhöfer HG, Nüsslein-Volhard C. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature, 1986, 324: 120~125

25 Driever W, Siegel V, Nüsslein-Volhard C. Autonomous determination of anterior structures in the early Drosophila embryo by the bicoid morphogen. Development, 1990, 109: 811~820

26 Brown S, Fellers J, Shippy T, Denell R, Stauber M, Schmidt-Ott U. A strategy for mapping bicoid on the phylogenetic tree. Curr Biol, 2001, 11: R43~44

27 Stauber M, Prell A, Schmidt-Ott U. A single Hox3 gene with composite bicoid and zerknüllt expression characteristics in non-Cyclorrhaphan flies. Proc Natl Acad Sci USA, 2002, 99: 274~279

28 McGregor AP. How to get ahead: the origin, evolution and function of bicoid. Bioessays, 2005, 27: 904~913

29 McGregor A.P. Wasps, beetles and the beginning of the ends. Bioessays, 2006, 28 (7): 683~686

30 Schroder R. The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature, 2003, 422 (6932): 621~625

31 Schinko JB, Kreuzer N, Offen N, Posnien N, Wimmer EA, Bucher G. Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol, 2008, 317 (2): 600~613

32 Janody F, Reischl J, Dostatni N. Persistence of Hunchback in the terminal region of the Drosophila blastoderm embryo impairs anterior development. Development, 2000, 127 (8): 1573~1582

33 Lemke S, Schmidt-Ott U. Evidence for a composite anterior determinant in the hover fly Episyrphus balteatus (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage. Development, 2009, 136 (1): 117~127

34 Finkelstein R, Perrimon N. The orthodenticle gene is regulated by bicoid and torso and specifies Drosophila head development. Nature, 1990, 346 (6283): 485~488

35 Wieschaus E, Perrimon N, Finkelstein R. orthodenticle activity is required for the development of medial structures in the larval and adult epidermis of Drosophila. Development, 1992, 115 (3): 801~811

36 Gao Q, Wang Y, Finkelstein R. Orthodenticle regulation during embryonic head development in Drosophila. Mech Dev, 1996, 56 (1~2): 3~15

37 Gallitano-Mendel A , Finkelstein R. Ectopic orthodenticle expression alters segment polarity gene expression but not head segment identity in the Drosophila embryo. Dev Biol, 1998, 199 (1): 125~137

38 Lehmann R, Nüsslein-Volhard C. hunchback, a gene required for segmentation of anterior and posterior regions of the Drosophila embryo. Dev Biol, 1987, 119: 402~417

39 Berleth T, Burri M, Thoma G, Bopp D, Richstein S, Frigerio G, Noll M, Nüsslein-Volhard C. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J,1988, 7: 1749~1756

40 Lynch JA, Olesnicky EC, Desplan C. Regulation and function of tailless in the long germ wasp Nasonia vitripennis. Dev Genes Evol, 2006, 216 (7~8): 493~498

41 Cohen SM, Jurgens G. Drosophila headlines. Trends Genet, 1991, 7: 267~272

42 Finkelstein R, Perrimon N. The molecular genetics of headdevelopment in Drosophila melanogaster. Development, 1991, 112: 899~912

43 Cohen SM, Jurgens G. Gap-like segmentation genes that mediate Drosophila head development. Nature, 1990, 346: 482~485

44 Gao Q, Finkelstein R. Targeting gene expression to the head: the Drosophila orthodenticle gene is a direct target of the Bicoid morphogen. Development, 1998, 125 (21): 4185~4193

45 Wimmer EA, Jackle H, Pfeifle C, Cohen SM. A Drosophila homologue of human Sp1 is a head-specific segmentation gene. Nature, 1993, 366 (6456): 690~694

46 Grossniklaus U, Cadigan KM, Gehring WJ. Three maternal coordinate systems cooperate in the patterning of the Drosophila head. Development, 1994, 120 (11): 3155~3171

47 Royet J, Finkelstein R. Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. Development, 1995, 121 (11): 3561~3572

48 Younossi-Hartenstein A, Green P, Liaw GJ, Rudolph K, Lengyel J, Hartenstein V. Control of early neurogenesis of the Drosophila brain by the head gap genes tll, otd, ems, and btd. Dev Biol, 1997, 182 (2): 270~283

49 Rudolph KM, Liaw GJ, Daniel A, Green P, Courey AJ, Hartenstein V, Lengyel JA. Complex regulatory region mediating tailless expression in early embryonic patterning and brain development. Development, 1997, 124 (21): 4297~4308

50 Royet J, Finkelstein R. hedgehog, wingless and orthodenticle specify adult head development in Drosophila. Development, 1996, 122 (6): 1849~1858

51 Struhl G, Struhl K, MacDonald PM. The gradient morphogen bicoid is a concentration-dependent transcriptional activator. Cell, 1989, 57:1259~1273

52 Driever W, Nusslein-Volhard C. The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature, 1989, 337:138~143

53 Schroder R, Beermann A, Wittkopp N, Lutz R. From development to biodiversity-Tribolium castaneum, an insect model organism for short germband development. Dev Genes Evol, 2008, 218 (3~4): 119~126

54 Reichert H, Simeone A. Conserved usage of gap and homeotic genes in patterning the CNS. Curr Opin Neurobiol, 1999, 9 (5): 589~595

55 Chang J, Jeon SH, Kim SH. The hierarchical relationship among the spitz/Egfr signaling genes in cell fate determination in the Drosophila ventral neuroectoderm. Mol Cells, 2003, 15 (2): 186~193

56 Tahayato A, Sonneville R, Pichaud F, Wernet MF, Papatsenko D, Beaufils P, Cook T, Desplan C. Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev Cell, 2003, 5 (3): 391~402

57 Vandendries ER, Johnson D, Reinke R. orthodenticle is required for photoreceptor cell development in the Drosophila eye. Dev Biol, 1996, 173 (1): 243~255

58 Xie B, Charlton-Perkins M, McDonald E, Gebelein B, Cook T. Senseless functions as a molecular switch for color photoreceptor differentiation in Drosophila. Development, 2007, 134 (23): 4243~4253

59 Sprecher SG, Pichaud F, Desplan C. Adult and larval photoreceptors use different mechanisms to specify the same Rhodopsin fates. Genes Dev, 2007, 21 (17): 2182~2195

60 Lichtneckert R, Reichert H. Insights into the urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity, 2005, 94 (5): 465~477

61 Rosenberg MI, Lynch JA, Desplan C. Heads and tails: Evolution of antero-posterior patterning in insects. Biochim Biophys Acta, 2009, 1789 (4): 333~342

62 Ranade SS, Yang-Zhou D, Kong SW, McDonald EC, Cook TA, Pignoni F. Analysis of the otd-dependent transcriptome supports the evolutionary conservation of CRX/OTX/OTD functions in flies and vertebrates. Dev Biol, 2008, 315 (2): 521~534

PDF