doi:

DOI: 10.3724/SP.J.1249.2017.01027

Journal of Shenzhen University Science and Engineering (深圳大学学报理工版) 2017/34:1 PP.27-32

RNA-seq analysis on Arabidopsis ago1-27 mutant


Abstract:
miRNAs play important roles in plant development and adaptation to environment. We conduct the RNA-seq of Arabidopsis ago1-27 mutant and has identified thousands of differentially expressed genes. The study shows that miRNA targets tend to be upregulated in the ago1-27 mutant. New miRNA targets are identified by ago1-27 RNA-seq combined with degradome analysis. For examples, miR396 targets cysteine proteinase genes and miR167 targets a gene encoding AT-hook DNA-binding protein.

Key words:phytobiochemistry,microribonucleic acid (miRNA),ago1-27,RNA-seq,degradome,target genes,Arabidopsis

ReleaseDate:2017-01-17 15:39:43



[1] Bartel D P.MicroRNAs:genomics, biogenesis, mechanism, and function[J].Cell,2004,116(2):281-297.

[2] Rogers K, Chen Xuemei. Biogenesis, turnover, and mode of action of plant microRNAs[J]. The Plant Cell, 2013, 25(7):2383-2399.

[3] Voinnet O. Origin, biogenesis, and activity of plant microRNAs[J].Cell,2009,136(4):669-687.

[4] Wu Gang.Plant MicroRNAs and development[J].Journal of Genetics and Genomics,2013,40(5):217-230.

[5] Rhoades M W, Reinhart B J, Lim L P, et al. Prediction of plant microRNA targets[J].Cell, 2002,110(4):513-520.

[6] Jones-Rhoades M W, Bartel D P.Computational identification of plant microRNAs and their targets, including a stress-induced miRNA[J].Molecular Cell,2004,14(6):787-799.

[7] Allen E, Xie Zhixin, Gustafson A M, et al. MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants[J].Cell,2005,121(2):207-221.

[8] Dai Xinbin, Zhao P X. psRNATarget:a plant small RNA target analysis server[J]. Nucleic Acids Research, 2011,39(S2):W155-W159.

[9] Addo-Quaye C, Eshoo T W,Bartel D P, et al. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome[J]. Current Biology, 2008,18(10):758-762.

[10] German M A, Pillay M, Jeong D H,et al.Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends[J].Nature Biotechnology,2008,26(8):941-946.

[11] Li Shengben, Le B, Ma Xuan, et al. Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis[J/OL]. ELife,2016,5:e22750. (2016-12-12)[2016-12-20]. https://elifesciences.org/content/5/e22750.doi:10.7554/elife.22750.

[12] Li Shengben, Liu Lin, Zhuang Xiaohong, et al.MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis[J].Cell,2013,153(3):562-574.

[13] Brodersen P, Sakvarelidze-Achard L,Bruun-Rasmussen M, et al. Widespread translational inhibition by plant miRNAs and siRNAs[J].Science,2008,320(5880):1185-1190.

[14] Reid D W, Nicchitta C V. Diversity and selectivity in mRNA translation on the endoplasmic reticulum[J]. Nature Reviews Neuroscience, 2015, 16(4):221-231.

[15] Rabouille C. Pathways of unconventional protein secretion[J/OL]. Trends Cell Biology, 2016, in press. (2016-12-16)[2016-12-20]. http://dx.doi.org/10.1016/j.tcb.2016.11.007.

[16] Wang Pengwei, Hawes C, Hussey P J. Plant endoplasmic reticulum-plasma membrane contact sites[J/OL].Trends in Plant Science, 2016, in press. (2016-12-09)[2016-12-20]. http://dx.doi.org/10.1016/j.tplants.2016.11.008.

[17] Cuperus J T, Fahlgren N, Carrington J C. Evolution and functional diversification of miRNA genes[J]. Plant Cell, 2011, 23(2):431-442.

[18] Brousse C, Liu Qikun, Beauclair L, et al. A non-canonical plant microRNA target site[J]. Nucleic Acids Research, 2014, 42(8):5270-5279.

[19] Creasey K M, Zhai Jixian, Borges F, et al. miRNAs trigger widespread epigenetically activated siRNAs from transposons in Arabidopsis[J]. Nature, 2014, 508(7496):411-415.

[20] Wang Feng, Polydore S, Axtell M J. More than meets the eye? Factors that affect target selection by plant miRNAs and heterochromatic siRNAs[J],Current Opinion Plant Biology, 2015,27:118-124.