doi:

DOI: 10.3724/SP.J.1142.2012.10100

Plant Science Journal (植物科学学报) 2012/30:1 PP.100-106

Physiological Role of Cyclic Electron Flow in Higher Plants


Abstract:
As an important alternative electron flow,cyclic electron flow(CEF) is essential for photosynthesis in many higher plants.The CEF-dependent generation of proton gradient across thylakoid membranes not only activates ATP synthesis but also protects photosystemⅡfrom photoinhibition through activating non-photochemical quenching and stabilizing oxygen-evolving complexes.Furthermore,CEF can alleviate the over-reduction of acceptor side of photosystemⅠ(PSⅠ) and generation of superoxide anion,and thus protect PSⅠ from photoinhibition.This review briefly summarizes the pathways of CEF,roles of CEF,response of CEF to environmental stress,and proposes perspectives.

Key words:Cyclic electron flow,Photoprotection,Photoinhibition,ATP synthesis,Environ-mental stress

ReleaseDate:2015-04-15 13:21:21



[1] Chow W S, Aro E M. Photoinactivation and mecha-nisms of recovery[M]// Wydrzynski T, Satoh Keds. PhotosystemⅡ: The Light- driven Water: Plas-toquinone Oxidoreductase Advances in Photosyn-thesis and Respiration. Dordrecht: Springer,2005: 627-648.

[2] Sonoike K. Degradation of psa B gene product, thereaction center subunit of photosystem Ⅰ,iscaused during photoinhibition of photosystemⅠ:Possible involvement of active oxygen species[J]. Plant Sci, 1996, 115: 157-164.

[3] Sonoike K. Photoinhibition and protection of photo-systemⅠ[M]// Golbeck J H eds. PhotosystemⅠ:The Light- driven Plastocyanin: Ferredoxin Oxi-doreductase, Series Advances in Photosynthesisand Respiration. Dordrecht: Springer, 2006: 657-668.

[4] Munekage Y, Hashimoto M, Miyake C, TomizawaK, Endo T, Tasaka M, Shikanai T. Cyclic electronflow around photosystemⅠ is essential for photo-synthesis[J]. Nature, 2004, 429: 579-582.

[5] Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M,Shikanai T. PGR5 is involved in cyclic electron flowaround photosystemⅠ and is essential for photo-protection in Arabidopsis[J]. Cell,2002,110:361-371.

[6] Munekage Y, Genty B, Peltier G. Effect of PGR5impairment on photosynthesis and growth in Arabi-dopsis thalianai[J]. Plant Cell Physiol,2008,49:1688-1698.

[7] Takahashi S, Milward S E, Fan D Y, Chow W S,Badger M R. How does cyclic electron flow allevi-ate photoinhibition in Arabidopsis? [J]. Plant Phy-siol, 2009, 149: 1560-1567.

[8] Arnon D I. Conversion of light into chemical energyin photosynthesis[J]. Nature, 1959, 184: 10-21.

[9] Johnson G N. Physiology of PSⅠ cyclic electrontransport in higher plants[J]. Biochim Biophys Ac-ta, 2011, 1807: 384-389.

[10] Shikanai T, Endo T, Hashimoto T, Yamada Y, Asa-da K, Yokota A. Directed disruption of the tobaccondhB gene impairs cyclic electron flow aroundphotosystem Ⅰ[J]. Proc Natl Acad Sci USA,1998, 95: 9705-9709.

[11] Shikanai T. Cyclic electron transport around photo-system Ⅰ: genetic approaches[J]. Annu RevPlant Biol, 2007, 58: 199-217.

[12] DalCorso G, Pesaresi P, Masiero S, Aseeva E,Schunemann D, Finazzi G, Joliot P, Barbato R,Leister D. A complex containing PGRL1 and PGR5is involved in the switch between linear and cyclicelectron flow in Arabidopsis[J]. Cell,2008,132:273-285.

[13] Nandha B, Finazzi G, Joliot P, Hald S, Johnson GN. The role of PGR5 in the redox poising of photo-synthetic electron transport[J]. Biochim BiophysActa, 2007, 1767: 1252-1259.

[14] Endo T, Shikanai T, Sato F, Asada K. NAD(P) Hdehydrogenase- dependent,antimycin A- sensitiveelectron donation to plastoquinone in tobaccochloroplasts[J]. Plant Cell Physiol,1998,39:1226-1231.

[15] Genty B, Harbinson J, Baker N R. Relative quan-tum efficiencies of the 2 photosystems of leaves inphotorespiratory and nonphotorespiratory condi-tions[J]. Plant Physiol Biochem, 1990, 28: 1-10.

[16] Wang P, Duan W, Takabayashi A, Endo T, ShikanaiT, Ye J Y, Mi H L. Chloroplastic NAD(P) H dehy-drogenase in tobacco leaves functions in allevia-tion of oxidative damage caused by temperaturestress[J]. Plant Physiol, 2006, 141: 465-474.

[17] Horvath E M, Peter S O, Joet T, Rumeau D, Cour-nac L, Horvath G V, Kavanagh T A, Schafer C,Peltier G, Medgyesy P. Targeted inactivation of the plastid ndhB gene in tobacco results in an en-hanced sensitivity of photosynthesis to moderatestomatal closure[J]. Plant Physiol,2000,123:1337-1349.

[18] Allakhverdiev S I, Nishiyama Y, Takahashi S, MiyairiS, Suzuki I, Murata N. Systematic analysis of the re-lation of electron transport and ATP synthesis tothe photodamage and repair of photosystem Ⅱ insynechocystis[J]. Plant Physiol, 2005, 137: 263-273.

[19] Huang W,Zhang S B,Cao K F. The differenteffects of chilling stress under moderate illumina-tion on photosystem Ⅱ compared with photosys-tem Ⅰ and subsequent recovery in tropical treespecies[J]. Photosynth Res,2010,103: 175 -182.

[20] Huang W, Zhang S B, Cao K F. Stimulation of cy-clic electron flow during recovery after chilling- in-duced photoinhibition of PS Ⅱ [J]. Plant Cell Physiol,2010, 51: 1922-1928.

[21] Heber U, Walker D A. Concerning a dual functionof coupled cyclic electron transport in leaves[J].Plant Physiol, 1992, 100: 1621-1626.

[22] Golding A J, Johnson G N. Down- regulation of line-ar and activation of cyclic electron transport duringdrought[J]. Planta, 2003, 218: 107-114.

[23] Miyake C, Shinzaki Y, Miyata M, Tomizawa K. En-hancement of cyclic electron flow around PSⅠ athigh light and its contribution to the induction ofnon- photochemical quenching of chl fluorescencein intact leaves of tobacco plants[J]. Plant CellPhysiol, 2004, 45: 1426-1433.

[24] Miyake C,Horiguchi S,Makino A,Shinzaki Y,Yamamoto H, Tomizawa K. Effects of light intensityon cyclic electron flow around PSⅠ and its rela-tionship to non- photochemical quenching of chlfluorescence in tobacco leaves [J]. Plant CellPhysiol, 2005, 46: 1819-1830.

[25] Miyake C, Miyata M, Shinzaki Y, Tomizawa K. CO 2response of cyclic electron flow around PSⅠ(CEF- PSⅠ) in tobacco leaves—relative electronfluxes through PSⅠ and PSⅡ determine the mag-nitude of non- photochemical quenching (NPQ) ofchl fluorescence[J]. Plant Cell Physiol,2005,46:629-737.

[26] Ettinger W F, Clear A M, Fanning K J, Peck M L.Identiflcation of a Ca 2+ /H + antiport in the plantchloroplast thylakoid membrane[J]. Plant Physiol,1999, 119: 1379-1385.

[27] Hakala M, Tuominen I, Kernen M, Tyystjrvi T,Tyystjrvi E. Evidence for the role of the oxygen-evolving manganese complex in photoinhibition ofphotosystem Ⅱ[J]. Biochim Biophys Acta,2005,1706: 68-80.

[28] Ohnishi N, Allakhverdiev S I, Takahashi S, HigashiS, Watanabe M, Nishiyama Y, Murata N. Two- stepmechanism of photodamage to photosystem Ⅱ:step one occurs at the oxygen- evolving complexand step two occurs at the photochemical reactioncenter[J]. Biochemistry, 2005, 44: 8494-8499.

[29] Sonoike K. The different roles of chilling tempera-tures in the photoinhibition of photosystem Ⅰ andphotosystem Ⅱ[J]. J Photochem Photobiol B: Bi-ol, 1999, 48: 136-141.

[30] Bukhov N G, Govindachary S, Rajagopal S, JolyD, Carpentier R. Enhanced rates of P700 + dark-reduction in leaves of Cucumis sativus L. photoin-hibited at chilling temperature[J]. Planta,2004,218: 852-861.

[31] Clarke J, Johnson G N. In vivo temperature de-pendence of cyclic and pseudocyclic electrontransport in barley[J]. Planta,2001,212: 808-816.

[32] Hirotsu N, Makino A, Yokota S, Mae T. The photo-synthetic properties of rice leaves treated with lowtemperature and high irradiance[J]. Plant CellPhysiol, 2005, 46: 1377-1383.

[33] Huang W, Zhang S B, Cao K F. Cyclic electron flowplays an important role in photoprotection of tropi-cal trees illuminated at temporal chilling tempera-ture[J]. Plant Cell Physiol, 2011, 52: 297-305.

[34] Kim S J, Lee C H, Hope A B, Chow W S. Inhibitionof photosystem Ⅰ and Ⅱ and enhanced back flowof photosystem Ⅰ electrons in cucumber leafdiscs chilled in the light[J]. Plant Cell Physiol,2001, 42: 842-848.

[35] Barth C, Krause G H, Winter K. Responses of pho-tosystem Ⅰ compared with photosystem Ⅱ tohigh- light stress in tropical shade and sun leaves[J]. Plant Cell Environ, 2001, 24: 163-176.

[36] Iwai M, Takizawa K, Tokutsu R, Okamuro A, Taka-hashi Y, Minagawa J. Isolation of the elusive super-complex that drives cyclic electron flow in photo-synthesis[J]. Nature, 2010, 464: 1210-1213.

37] Miyake C. Alternative electron flows (water - watercycle and cyclic electron flow around PSⅠ) inphotosynthesis: molecular mechanisms and physi-ological functions[J]. Plant Cell Physiol,2010,51: 1951-1963.

[38] Hormann H, Neubauer C, Schreiber U. An activeMehler- peroxidase sequence can prevent cyclicPSⅠ electron transport in the presence of dioxy-gen in intact chloroplasts[J]. Photosynth Res,1994, 57: 61-70.

[39] Allen J F. Cyclic, pseudocyclic and noncyclic pho-tophosphorylation: New links in the chain[J].Trends Plant Sci, 2003, 8: 15-19.

[40] Yamamoto H, Kato H, Shinzaki Y, Horiguchi S, Shi-kanai T, Hase T, Endo T, Nishioka M, Maniko A, To-mizawa K, Miyake C. Ferredoxin limits cyclic elec-tron flow around PSI (CEF- PSI) in higher plants—stimulation of CEF- PSⅠ enhances nonphotochemi-cal quenching of Chl fluorescence in transplastomictobacco[J]. Plant Cell Physiol,2006,47: 1355-1371.

[41] Lehtimaki N, Lintala M, Allahverdiyeva Y, Aro E M,Mulo P. Drought stress- induced upregulation ofcomponents involved in ferredoxin- dependent cy-clic electron transfer[J]. J Plant Physiol,2010,167: 1018-1022.

[42] Teicher H B, Mller B L, Scheller H V. Photoinhibi-tion of photosystem Ⅰ in fleld- grown barley (Hor-deum vulgare L. ): Induction, recovery and accli-mation[J]. Photosynth Res, 2000, 64: 53-61.